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The porosity of fibrous materials is an important factor to their insulating performance. This paper con-
siders the optimal porosity distribution of non-uniform fibrous porous medias for thermal insulation.
Heat flow through the fibrous porous media is described by a coupled conduction–radiation heat transfer
model which is numerically solved by using Finite Volume Method, and the optimal porosity distribution
corresponding to the minimum total heat transfer is derived by applying a BFGS quasi-Newton optimi-
zation procedure. Variable analysis shows that the optimal porosity distribution is typically piecewise
in conductive heat transfer dominated porous medium. For practical reasons, the change of porosity dis-
tribution across the thickness of the fibrous porous media may need to be continuous. To derive such a
continuous optimal porosity distribution, a small penalty item should be introduced into the objective
function. The study shows that, a continuous optimal porosity distribution generally has relatively high
porosity at both boundaries and relatively low porosity in the centre region. The optimal distribution
depends on many factors such as fibre radius, fibre emissivity, temperature difference, and overall mean
porosity.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the porosity or fibre fractional volume is
an important factor to the thermal insulating performance of fi-
brous porous materials [1–6]. Although there are other parameters
of porous structures, such as pore diameter and pore shape which
can also affect the thermal resistance, we concentrate on the effect
of porosity distribution at present. Nevertheless, the question
whether there is an optimal distribution of porosity, and which
form this distribution of porosity should have are still not properly
addressed. In [7], we showed that there is an optimal porosity for a
uniform fibrous insulation in view of maximizing its thermal insu-
lating performance, and proposed the use of Simulated Annealing
Method for determining the optimal porosities of the constituent
layers of a multi-layer fibrous insulation. Simulated Annealing
Method may be appropriate for a multi-layer fibrous insulation
consisting of a limited number of layers, it is inefficient and inad-
equate when dealing with the porosity distribution of a non-uni-
form fibrous insulation. The objective of the present study is to
derive the optimal porosity distribution of a non-uniform fibrous
insulation corresponding to the minimum total heat transfer and
investigate how material and boundary parameters affect the dis-
ll rights reserved.
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tribution. A BFGS quasi-Newton optimization procedure is applied
in this study.
2. Heat transfer model and optimization analysis

Consider a fibrous porous media of a fibrous material of thick-
ness D held between the two plates at temperatures T0 and TD

(T0 > TD). It has been shown in [1] that heat transfer within the
fibrous material takes place by radiation and conduction, and con-
vection can be neglected up to a porosity of 0.992.

Let x be the distance from the hot plate. Suppose the fibrous
porous media is composed of randomly oriented fibres of radius
R, and thermal emissivity e. Denote by f(x) the fractional volume
of fibre at point x, e(x) = 1 � f(x) the porosity distribution of the
fibrous porous media. Consider a volume element of thickness dx
at point x within the sample. Let FR(x) be the total thermal radia-
tion incident on this volume element traveling to the right, FL(x)
be the corresponding flux to the left. Ignoring the scattering of
radiation by the fibres, the attenuation of the radiation fluxes is gi-
ven by [1].

dFRðxÞ
dx

¼ �bðxÞFRðxÞ þ bðxÞrT4ðxÞ; ð1Þ

dFLðxÞ
dx

¼ bðxÞFLðxÞ � bðxÞrT4ðxÞ; ð2Þ

where the absorption and emissivity coefficient bðxÞ ¼ f ðxÞe
R .
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Nomenclature

D thickness of fibrous material (cm)
e, e1, e2 emissivity
f fractional volume of fibre
FL thermal radiation to the left (W/m2)
FR thermal radiation to the right (W/m2)
H Hessian matrix
In1, In2 subsets
k effective thermal conductivity (W/m K)
ka thermal conductivity of air (W/m K)
kf thermal conductivity of fibre (W/m K)
N number of layers
Q total heat flow (W/m2)
R radius of fibres (lm)
x position

T, T0, TD temperature (K)

Greek symbols
b absorption and emissivity coefficient
dx, Dx distances of intervals
e porosity
e*, e* lower and upper bound of porosity
�e mean porosity
c smoothing number
� penalty number
g improvement rates
k Lagrange multiplier
h angle (rad.)
r Boltzman constant (W/m2 K4)
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Suppose the convective heat transfer is negligible and we only
need to consider conductive and radiative heat transfer in the fi-
brous porous media, the total heat flow at point x is

Q ¼ �kðxÞdTðxÞ
dx
þ FRðxÞ � FLðxÞ; ð3Þ

where �kðxÞ dTðxÞ
dx stands for the conductive heat flow, FR(x) � FL(x)

stands for the radiative heat flow, and k(x) is the effective thermal
conductivity k(x) = e(x)ka + f(x)kf.

At steady state condition, Q must be a constant and its deriva-
tive zero, so that Eq. (3) becomes

d
dx

kðxÞ dTðxÞ
dx

� �
¼ dFRðxÞ

dx
� dFLðxÞ

dx
: ð4Þ

Boundary conditions are also needed. For temperature T, it is
simply

Tð0Þ ¼ T0; TðDÞ ¼ TD; ð5Þ

for radiative heat flow, they are

ð1� e1ÞFLð0Þ þ e1rT4
0 ¼ FRð0Þ; ð6Þ

ð1� e2ÞFRðDÞ þ e2rT4
D ¼ FLðDÞ: ð7Þ

In practice, the porosity value cannot be too high to introduce
natural convection, or too small to reduce the permeability of the
fibrous porous media to an unacceptably low value. Consequently,
there are limits that the porosity values can change, viz.
0 < e� 6 eðxÞ 6 e� < 1, where e* and e* are the lower and upper
bound of porosity values, respectively.

When the porosity distribution is isotropic, i.e., e = e(x) holds
constant, an analytical optimal porosity is derived in [7]

e ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r�T3R

eðkf � kaÞ

s
; ð8Þ

where �T ¼ ðT0 þ TDÞ=2, and (8) can be viewed as the optimal poros-
ity distribution of the single-layer case.

Given different distribution of porosity e(x) with the other
parameters unchanged, the heat transfer model (1)–(7) will result
in different total heat loss Q. Therefore, Q can be viewed as a func-
tional of e(x) so that the fundamental optimization problem is to
find an optimal porosity distribution e = e(x) such that

min
eðxÞ

QðeÞ

s:t: 0 < e� 6 eðxÞ 6 e� < 1:
ð9Þ
Sometimes, it may also be necessary to keep the overall mass of
the fibrous porous media (in other words, fixing the overall mean
porosity �e) constant and to seek the maximal thermal insulation
by merely changing its geometric structure, hence the optimiza-
tion problem becomes

min
eðxÞ

QðeÞ

s:t: 0 < e� 6 eðxÞ 6 e� < 1;R D
0 eðxÞdx ¼ D�e:

ð10Þ

Since it is hard to obtain the analytical expression of Q(e) from
the heat transfer model (1)–(7), we consider a simple case with
radiation heat being ignored (reasonable for fibrous porous media
with relatively lower porosity, where conductive heat is the dom-
inating part), hence

d
dx

kðxÞ dTðxÞ
dx

� �
¼ 0: ð11Þ

It is easy to determine in this case the total heat Q ¼ T0�TDR D

0
1=kðxÞ dx

,

so the optimization problem is to find the optimal porosity distri-
bution e = e(x) such that mineðxÞQðeÞ, which is identical to
maxeðxÞ

R D
0

1
kðxÞdx. Set e(x) = e* + (e* � e*)sin2 h(x), we haveZ D

0

1
kðxÞ dx ¼

Z D

0

1

ðka � kf Þðe� þ ðe� � e�Þ sin2 hðxÞÞ þ kf

dx

¼
Z D

0
Fðx; hÞdx: ð12Þ

Euler equation in variational analysis [8] shows

dF
dh
¼ � ðka � kf Þðe� � e�Þ sin 2hðxÞ

ðka � kf Þðe� þ ðe� � e�Þ sin2 hðxÞÞ þ kf

� �2 ¼ 0;

which gives hðxÞ ¼ np=2 ðn ¼ 0;�1;�2; . . .Þ, corresponding to
e(x) � e* or e(x) � e*. This is easily understandable, since without
radiation, maximal conductive heat takes place when e(x) � e* and
minimum takes place when e(x) � e*.

When the constraint
R D

0 eðxÞdx ¼ D�e applies, an Lagrange multi-
plier k may be introduced into the objective functional to giveZ D

0
Fðx; h; kÞdx ¼

Z D

0

1

ðka � kf Þðe� þ ðe� � e�Þ sin2 hðxÞÞ þ kf

dx

þ k
Z D

0
sin2 hðxÞdx� D�e� De�

e� � e�

� �
: ð13Þ



4352 N. Du et al. / International Journal of Heat and Mass Transfer 52 (2009) 4350–4357
In this case, Euler equation shows

dF
dh ¼ �

ðka�kf Þðe��e�Þ sin 2hðxÞ

ðka�kf Þ e�þ e��e�ð Þ sin2 hðxÞð Þþkfð Þ2
þ k sin 2hðxÞ ¼ 0;

dF
dk ¼

R D
0 sin2 hðxÞdx� D�e�De�

e��e�
¼ 0:

8><
>:

The only analytical solution of the above equations is
sin2 hðxÞ ¼ �e�e�

e��e�, viz., eðxÞ � �e. Under this porosity distribution,
the heat transfer is maximum. This implies that the continuous
optimal model (10) may not have any minimal solution, since
the Euler’s method requires that the solution is smooth, the opti-
mal heat transfer problem achieves its minimum at a non-
smooth point.

Now we study a discrete model by assuming the non-uniform
batting consisting of n layers of thickness Dx with a constant
porosity at each layer. The integral in (12) can be rewritten by

Z D

0

1
kðxÞ dx ¼ Dx

Xn

i¼1

1
ki
;

where ki = (ka � kf)ei + kf. When the porosity e is continuous, the
right-hand side in above equation can be considered as an approx-
imation of this integral by using the mid-point rule. The corre-
sponding constraint of equality in (10) is given by

Dx
Xn

i¼1

ei ¼ D�e

so that the discrete optimization problem is described by

max
e

PðeÞ ¼ Dx
Pn
i¼1

1
ki

s:t: 0 < e� 6 ei 6 e� < 1; i ¼ 1;2; . . . ; n;

Dx
Pn
i¼1

ei ¼ D�e:

ð14Þ

Similarly to the continuous counterpart, in terms of the method
of Lagrange multiplier, we can show that the above maximation
problem does not have any smooth solution, and the optimal solu-
tion is achieved only on the boundary. Assume

ei ¼ e� for i 2 In1 and ei ¼ e� for i 2 In2;

where In1 and In2 are two subsets of In = {1, 2, . . . , n}, and
In1
T

In2 ¼ ;. Then the optimal problem (14) reduces to

max
e

PðeÞ ¼ Dx
P

iRIn1 ;iRIn2

1
ki
þ CI

s:t: 0 < e� 6 ei 6 e� < 1; i R In1; i R In2

Dx
P

iRIn1 ;iRIn2

ei ¼ D�e� �eI;

ð15Þ

where

CI ¼ Dx
X
i2In1

1
ðka � kf Þe� þ kf

þ
X
i2In2

1
ðka � kf Þe� þ kf

 !
;

�eI ¼ Dx
X
i2In1

e� þ
X
i2In2

e�
 !

:

ð16Þ

It is obvious that the optimization problem (15) is equivalent to
the model in (14), but with less variables. Using the above analysis
again, the model finally reduces to a problem with two variables
only. This problem can be easily solved by fixing one variable at
boundary values (e* or e*) and determining the other using the con-
straint of equality.

Based on the above analysis, we come to a conclusion that the
optimal porosity distribution of conductive heat insulation prob-
lem may have multiple solutions which are typically piecewise
and tend to be congregated at both ends. This means that, in a
media dominated with conductive heat transfer, the piecewise dis-
tribution of porosity with extreme values of either e* or e* (at most
one exception) reduces heat transfer.

When both conductive and radiative heat are taken into con-
sideration, it is difficult to give analytical solutions to the opti-
mization problem (10) or its discrete model. In this case, our
numerical experiments below show that the optimal porosity
distributions are still piecewise and normally fluctuated. In prac-
tical applications, too fast fluctuation of porosity across a tiny
thickness may not be realistic, as fibres have specific fineness
and length and the porosity by its definition is a macroscale
average of the volume of space over the total volume. In order
to derive a continuous optimal porosity distribution, a small
penalty can be introduced to the objective function, and the
optimization problem becomes

min
eðxÞ

QðeÞ þ c
R D

0 e0ðxÞð Þ2dx

s:t: 0 < e� 6 eðxÞ 6 e� < 1
ð17Þ

and

min
eðxÞ

QðeÞ þ c
R D

0 ðe0ðxÞÞ
2dx

s:t: 0 < e� 6 eðxÞ 6 e� < 1;R D
0 eðxÞdx ¼ D�e;

ð18Þ

where e0(x) stands for the derivative of e(x) and c is a small positive
number. When c is taken to be zero, we get the original fluctuating
porosity distribution.
3. Numerical calculation and optimization

3.1. Finite volume method for heat transfer model

Finite volume method [9] is applied to compute the numerical
solution of the heat transfer model (1)–(7). Let N be a positive inte-
ger, 0 ¼ ~x0 < ~x1 < ~x2 < � � � < ~xN ¼ D be a discretization of [0, D] and
½~xi�1; ~xi� represent the ith control volume, make sure to locate the
interfaces where the discontinuity in the material properties oc-
curs. The grid points x1, x2, . . . , xN are placed at the centres of the
control volumes, i.e., xi ¼ ð~xi�1 þ ~xiÞ=2, and the two boundary
points x0 = 0, xN+1 = D are added in. The distances between inter-
faces and/or grid points are denoted by Dxi ¼ ~xi � ~xi�1,
dxi = xi � xi�1, dx�i ¼ ~xi�1 � xi�1; dxþi ¼ xi � ~xi�1. Denote Ti = T(xi),
i = 0, 1, . . . , N + 1; ðFRÞi ¼ FRð~xiÞ; i ¼ 0;1; . . . ;N, and similar nota-
tions for FL.

Suppose {T0, T1, . . . , TN+1} has been given. Integrating Eq. (1)
over interval ½~xi�1; ~xi� and using mid-point quadrature formula for
the right-hand terms, we can obtain

ðFRÞi ¼
2� biDxi

2þ biDxi
ðFRÞi�1 þ

2biDxirT4
i

2þ biDxi
; i ¼ 1;2; . . . ;N: ð19Þ

Similarly, for Eq. (2), we have

ðFLÞi�1 ¼
2� biDxi

2þ biDxi
ðFLÞi þ

2biDxirT4
i

2þ biDxi
; i ¼ N;N � 1; . . . ;1: ð20Þ

The treatment of boundary conditions (6) and (7) is simple, viz.

ð1� e1ÞðFLÞ0 þ e1rT4
0 ¼ ðFRÞ0; ð21Þ

ð1� e2ÞðFRÞN þ e2rT4
N ¼ ðFLÞN : ð22Þ

Schemes (8) and (9) show that the values of FR can be computed
forward, whereas FL backward.
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Denote by ~ki�1 the heat conductivity at interface ~xi�1, it can be
determined by using the same strategy in [9]

dxi

~ki�1

¼ dx�i
ki�1
þ dxþi

ki
: ð23Þ

Integrate Eq. (4) over the ith control volume ½~xi�1; ~xi�. Assume T
is piecewise linear among the grid points, and denote
Ki�1 ¼

~ki�1
dxi
; Ki ¼

~ki
dxiþ1

, we obtain the discrete scheme:

Ki�1Ti�1 � ðKi�1 þ KiÞTi þ KiTiþ1

¼ ðFR � FLÞi � ðFR � FLÞi�1; i ¼ 1;2; . . . ;N: ð24Þ

Note that the equations for i = 1 and i = N should be modified
using boundary conditions (5). Therefore, Eq. (13) become a tridi-
agonal system and can be solved by the efficient Thomas Algorithm
[10]. After that, the updated values of {T0, T1, . . . , TN+1} will be used
in (8)–(11) for the next iteration step.

3.2. Discrete optimization problems and constraints handling

The temperature and radiation distribution fTig; fFRg; fFLg
ði ¼ 1;2; . . . ;NÞ can be derived by the above numerical calculation
of the heat transfer model. Apparently the total heat loss Q is a
function of the discrete porosities, i.e., Q = Q(e1, e2, . . . , eN), and
the discrete optimization problems become

min
ðe1 ;e2 ;...;eNÞ

Qðe1; e2; . . . ; eNÞ þ c
PN�1

i¼1

eiþ1�ei
Dxi

� �2
Dxi

s:t: e� 6 ei 6 e�; i ¼ 1; . . . ;N
ð25Þ

and

min
ðe1 ;e2 ;...;eNÞ

Qðe1; e2; . . . ; eNÞ þ c
PN�1

i¼1

eiþ1�ei
Dxi

� �2
Dxi

s:t: e� 6 ei 6 e�; i ¼ 1; . . . ;N ðNEQCÞ

�e ¼ 1
N

PN
i¼1

ei ðEQCÞ

ð26Þ

We concentrate on the optimization problem (26). In [7], Simu-
lated Annealing method is conveniently used for the determination
of optimal porosity distribution for 10-layers materials. Since we
aim at finding if there exists any pattern of optimal porosity distri-
bution in non-uniform fibrous porous media, materials with much
more layers should be considered. The Simulated Annealing meth-
od is inadequate for this task due to its low convergence rate in
solving high dimensional optimization problem. Therefore, the
more efficient Quasi-Newton algorithm is adopted in the present
study.

However, the Quasi-Newton algorithms are always used in
solving unconstrained optimization. The constraints of inequalities
(NEQC) and the equality (EQC) should be removed first.

To remove the inequality constraints (NEQC), we introduce the
trigonometric substitution:

ei ¼
e� þ e�

2
þ e� � e�

2
sin hi; i ¼ 1; . . . ;N: ð27Þ

Thus for arbitrary hi, the corresponding ei satisfies inequality con-
straints automatically.

The equality constraint (EQC) becomes

XN

i¼1

sin hi ¼ N � 2e� e� � e�
e� � e�

¼ d ð28Þ

and it can be treated by introducing another form of penalty item in
the objective function:
Jðh1; h2; . . . ; hNÞ ¼ Qðh1; h2; . . . ; hNÞ

þ c
XN�1

i¼1

sin hiþ1 � sin hi

Dxi

� �2

Dxi

þ �
XN

i¼1

sin hi � d

 !2

; ð29Þ
where � is a large positive number, which means unless the equal-
ity constraint is held, the penalty will be too large to give the opti-
mal parameters. If � is taken to zero, it represent the optimization
problem without equality constraint (25).

In summary, the final discrete optimization problem becomes

min
ðh1 ;h2 ;...;hN Þ

Jðh1; h2; . . . ; hNÞ ð30Þ

with the parameters (h1, h2, . . . , hN) unconstrained.
3.3. BFGS quasi-Newton method for optimization

Newton’s method is well known for solving unconstrained non-
linear optimization problem due to its fast quadratic convergence.
It uses the first and second derivatives (gradient and Hessian) to
find the stationary point of the objective function y = f(x), where
x is a multi-dimensional vector:

xkþ1 ¼ xk � H�1ðxkÞrf ðxkÞ; ð31Þ

where rf ðxkÞ and H(xk) are the gradient and the Hessian at xk,
respectively.

However, the evaluation of the Hessian or its inverse matrix is
often impractical or very time-consuming. In Quasi-Newton meth-
ods, the Hessian matrix need not to be computed at any stage but
to be updated typically by adding a simple low-rank update to the
current estimate of the Hessian. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method is the most successful one in the Quasi-
Newton algorithms, which has the form [11]
H�1
k ¼ H�1

k�1 �
H�1

k�1yksT
k þ skyT

k H�1
k�1

yT
k sk

þ 1þ yT
k H�1

k�1yk

sT
k yk

 !
sksT

k

sT
k yk

; ð32Þ
where sk ¼ xk � xk�1; yk ¼ rf ðxkÞ �rf ðxk�1Þ; H�1
k is the approxima-

tion of H�1(xk).
After H�1

k being updated from H�1
k�1, it is obviously that

dk ¼ �H�1
k rf ðxkÞ is a descent direction and thus a 1D line search

algorithm is needed to find an optimal ak such that

xkþ1 ¼ xk þ akdk and f ðxkþ1Þ ¼min
a

f ðxk þ adkÞ: ð33Þ

But in general, it is too expensive to identify the optimal value
of ak since it requires too many evaluations of the objective func-
tion f and its gradientrf, thus a more practical line search strategy
based on cubic interpolation and backtracking approach [11,12] is
introduced in the program to ensure sufficient decrease of the val-
ues of the objective function.

The penalty number � in objective function (25) cannot be too
small, because a small � could not successfully reflect the penalty
for disobeying the equality constraint. Yet a too large � may reduce
accuracy in numerical computation. Consequently, an adaptive
selection of � is proposed by using the Sequence Unconstrained
Optimization Technique [13].

A brief description of BFGS Quasi-Newton algorithm is as
follows:
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1. Set initial values:
k ¼ 0; Initial guess x0; Initial penalty coefficient r; H�1

0 ¼ I.
2. Evaluate rf(xk) using finite-difference.
3. If ||rf(xk)|| 6 e, turn to Step 5.

Otherwise:
(1) Compute dk ¼ �H�1

k rf ðxkÞ.
(2) Find suitable ak by a line search algorithm.
(3) Update xk+1 from (33).

4. k ¼ kþ 1; Update H�1
k from (32); and turn to Step 2.

5. Compute the penalty related to the equality constraint, if small
enough, stop.
Otherwise: Set � ¼ a� ða > 1Þ, and turn to Step 2.
4. Optimal porosity distribution in non-uniform fibrous porous
media

Consider a fibrous porous media held between hot and cold
plates at different temperatures. Consider the fibrous porous media
consists of N layers, each having its own porosity, viz. e1, e2, . . . , eN.
The other material parameters, such as emissivity e, fibre radius R
and fibre conductivity kf, etc. hold constant anywhere in the fibrous
porous media. Given a small smoothing factor c, the above numeri-
cal calculation and optimization procedure can be applied to give the
discrete optimal porosity distribution of problems (25) and (26).

In the numerical experiments reported below, if not given spe-
cifically, the following parameters are used: D = 3 cm, N = 500,
T0 = 35 �C, TD = �20 �C, ka = 0.025 W/m K, kf = 0.2 W/m K, e1 = e2

= 0.6, e = 0.6, e* = 0.6, e* = 0.992.

4.1. Experiments onoptimization problem without fixed mean porosity
constraint

Fig. 1(a)–(f) plot the optimal porosity distribution of problem
(25) with different penalty coefficients c = 0, 0.001, 0.001, 0.01,
0.05, 0.1. The fibre radius of the fibrous porous media is
R = 10 lm. Table 1 shows the corresponding total heat transfer Qc
and the improvement rates g in comparison with the total heat
transfer Qe when e = 0.97, the optimal porosity of the uniform
fibrous porous media. g is calculated by

g ¼
Q e � Q c

Q e
� 100%: ð34Þ
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Fig. 1. Optimal porosity distributions w
It can be seen from the results that, the derived optimal porosity
distribution exhibits oscillation when there is no smoothening
(c = 0) or the penalty coefficient is very small (c = 0.0001), a contin-
uous optimal porosity distribution can be obtained at a higher va-
lue of c. Too high value of c is however not appropriate as this
would result in little improvement over the uniform fibrous porous
media in terms of thermal insulation. Although the solution of con-
tinuous optimal porosity distribution depends on the penalty coef-
ficient c, the exact value of which is difficult to determine, there is
a clear trend in terms of the shape of the continuous optimal
porosity distribution. It is clear that oscillation of porosity across
the thickness of the fibrous porous media is beneficial to thermal
insulation. If smoothened continuous porosity distribution is re-
quired for practical reasons, in order to improve thermal insula-
tion, the porosity should be higher at both ends and lower in the
intermediate zone. This trend can be explained by the conductive
and radiative heat flow across the thickness of the fibrous porous
media (see Fig. 2 of [1]). The conductive heat flow is higher at both
ends and lower at the intermediate zone, while the radiative heat
flow is just in the opposite situation. Higher porosity at both ends
can reduce the conductive heat transfer effectively and but only
slightly increase radiative heat transfer, and hence reduce the over-
all heat loss. Another feature of the porosity curve is that, the turn-
ing point of the hot side is lower than that of the cold side. This is
because radiative heat flow is proportional to the fourth power of
temperature. Radiative heat flow is stronger at the hot side than
that at the cold side and to reduce radiation, greater fibre volume
fraction at the hot side can minimize radiative heat transfer.

Fig. 2(a)–(e) plots the optimal porosity distributions derived
with varying fibre radius (R = 1, 2, 10, 20, 50 lm, respectively),
by fixing the penalty coefficient c = 0.05 and other material and
boundary parameters.

It can be seen from these figures that, with increasing fibre ra-
dius R, the high porosity regions at both ends expand, the low
porosity region in the centre shrinks, and the porosity value in
the central region and its changing slope decrease. This phenome-
non can be explained by the increased radiative heat flow and
boundary effects with a smaller absorption constant b resulted
from a greater fibre radius R. For coarser fibrous insulation, a
non-uniform fibrous insulation with an optimal porosity distribu-
tion provides greater improvement over a uniform fibrous insula-
tion (see Fig. 2(f)).
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Table 1
Total heat transfer and improvement rates of different penalty coefficients.

c = 0 c = 0.0001 c = 0.001 c = 0.01 c = 0.05 c = 0.1 e � 0.97

Qc(Qe) 59.003 63.534 65.013 65.021 65.035 65.047 65.486
g (%) 9.899 2.981 0.721 0.709 0.689 0.670 0.0
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Fig. 2. Optimal porosity distributions with different fibre radius and their improvement rates.
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Fig. 3. Optimal porosity distributions with different fibre emissivity and their improvement rates.
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Fig. 3(a)–(e) plots the effect of fibre emissivity on the optimal
porosity distribution, with e = 0.2, 0.4, 0.6, 0.8, 1.0, respectively.
Fig. 3(f) shows the improvement rates of thermal insulation with
increasing fibre emissivity. It can be seen, for fibrous porous media
consisting fibres of lower fibre emissivity, an optimal non-uniform
porosity distribution gives greater improvements in thermal insu-
lation in comparison with a uniform optimal porosity. This is
understandable in view of the definition of the absorption constant
b ¼ fe=R. Lower emissivity means lower absorption constant and
hence greater amount of radiative heat transfer, which can be re-
duced by an optimal non-uniform porosity distribution.
Fig. 4(a)–(e) shows the effects of temperatures of hot and cold
sides on the optimal porosity distribution, with (1) T0 = 35 �C,
TD = �20 �C, (2) T0 = 70 �C, TD = �40 �C, (3) T0 = 140 �C, TD = �80 �C,
(4) T0 = 210 �C, TD = �120 �C (5) T0 = 350 �C, TD = �200 �C, respec-
tively. The penalty coefficient c = 0.1, fibre radius R = 10 lm, and
the other parameters are the same as before. Fig. 4(f) plots the
improvement rates of thermal insulation as a function of tempera-
ture difference.

It can be seen from these figures that, with the increase of tem-
perature difference on both sides, for optimal thermal insulation,
there should be a sharper decrease in porosity near the hot side,
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Fig. 4. Optimal porosity distributions with different temperature differences and their improvement rates.
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and relatively higher porosity near the cold side. The slope of the
intermediate zone becomes more inclined. It can also be explained
by the fact that radiative heat transfer is proportional to the fourth
power of temperature, and hence there is much great fraction of
radiative heat transfer at the hot side.

4.2. Experiments on optimization problem with fixed mean porosity
constraint

Fig. 5(a)–(d) compares the results of optimal porosity distribu-
tion with different mean porosity value, viz. �e ¼ 0:912; 0:97;0:98;
0:99, respectively. The penalty coefficient c = 0.0001, fibre radius

R = 10 lm, and the other parameters are the same as before. It is
obviously that with the increase of the mean porosity value, the
corresponding porosity distribution become more smooth, even
the penalty coefficient c is very small. Since larger mean porosity
value represents higher ratio of thermal radiation and lower ratio
of conductive heat in the total heat transfer, oscillation of porosity
distribution have greater impact on the reduction of conductive
heat, but little effect on the reduction of radiative heat.
5. Conclusions

In this paper, we consider the optimal porosity distribution of
non-uniform fibrous porous media held between hot and cold
plates in view of providing maximal thermal insulation. The mech-
anism of heat transfer is described by a conduction–radiation cou-
pled model which is numerically computed by using Finite Volume
Method. A BFGS Quasi-Newton procedure is employed for the
determination of optimal porosity distribution for its high effi-
ciency in optimization. Two kinds of optimization problems with
or without fixed mean porosity constraint are considered. Different
optimal porosity distribution are derived and compared, corre-
sponding to different penalty coefficient, fibre radius, fibre emis-
sivity, temperature difference, and different mean porosity value.
The study show that piecewise distributed porosity within the
fibrous media can significant reduce conductive heat transfer. If
continuous porosity distribution is required for practical reasons,
for optimal thermal insulation, the general pattern is higher poros-
ity at both boundaries of the fibrous porous media and steadily
increasing in the intermediate zone, which coincides with the
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fraction of thermal radiation within the fibrous porous media. For
fibrous insulation consisting of coarse fibres, fibres of lower surface
emissivity and exposed to greater temperature difference, an opti-
mal non-uniform porosity distribution can provide more signifi-
cant improvements in thermal insulation in comparison with a
uniform porosity distribution.

The algorithms of numerical simulation and optimization can be
expected to apply into more sophisticated problems, e.g., the tran-
sient heat–moisture transfer model, to give the optimal porosity
distribution of fibrous materials corresponding to a combined
objective of minimal heat transfer and maximum moisture transfer.
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